Papers
Topics
Authors
Recent
2000 character limit reached

Learning-Augmented Perfectly Secure Collaborative Matrix Multiplication

Published 14 Jan 2026 in cs.IT, cs.MA, and eess.SY | (2601.09916v1)

Abstract: This paper presents a perfectly secure matrix multiplication (PSMM) protocol for multiparty computation (MPC) of $\mathrm{A}{\top}\mathrm{B}$ over finite fields. The proposed scheme guarantees correctness and information-theoretic privacy against threshold-bounded, semi-honest colluding agents, under explicit local storage constraints. Our scheme encodes submatrices as evaluations of sparse masking polynomials and combines coefficient alignment with Beaver-style randomness to ensure perfect secrecy. We demonstrate that any colluding set of parties below the security threshold observes uniformly random shares, and that the recovery threshold is optimal, matching existing information-theoretic limits. Building on this framework, we introduce a learning-augmented extension that integrates tensor-decomposition-based local block multiplication, capturing both classical and learned low-rank methods. We demonstrate that the proposed learning-based PSMM preserves privacy and recovery guarantees for MPC, while providing scalable computational efficiency gains (up to $80\%$) as the matrix dimensions grow.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.