Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evaluating Novelty in AI-Generated Research Plans Using Multi-Workflow LLM Pipelines

Published 24 Dec 2025 in cs.CL and cs.AI | (2601.09714v1)

Abstract: The integration of LLMs into the scientific ecosystem raises fundamental questions about the creativity and originality of AI-generated research. Recent work has identified ``smart plagiarism'' as a concern in single-step prompting approaches, where models reproduce existing ideas with terminological shifts. This paper investigates whether agentic workflows -- multi-step systems employing iterative reasoning, evolutionary search, and recursive decomposition -- can generate more novel and feasible research plans. We benchmark five reasoning architectures: Reflection-based iterative refinement, Sakana AI v2 evolutionary algorithms, Google Co-Scientist multi-agent framework, GPT Deep Research (GPT-5.1) recursive decomposition, and Gemini~3 Pro multimodal long-context pipeline. Using evaluations from thirty proposals each on novelty, feasibility, and impact, we find that decomposition-based and long-context workflows achieve mean novelty of 4.17/5, while reflection-based approaches score significantly lower (2.33/5). Results reveal varied performance across research domains, with high-performing workflows maintaining feasibility without sacrificing creativity. These findings support the view that carefully designed multi-stage agentic workflows can advance AI-assisted research ideation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 1 like about this paper.