Papers
Topics
Authors
Recent
Search
2000 character limit reached

MACRO-LLM: LLM-Empowered Multi-Agent Collaborative Reasoning under Spatiotemporal Partial Observability

Published 14 Jan 2026 in cs.MA | (2601.09295v1)

Abstract: LLM agents deployed in complex real-world scenarios typically operate as spatially distributed entities. However, this physical dispersion constrains agents to limited local perception and finite temporal horizons. We characterize this bottleneck as spatiotemporal partial observability. Given such fragmented awareness, distributed agents struggle to coordinate efficiently. To bridge this gap, we introduce MACRO-LLM, LLM-empowered multi-agent collaborative reasoning under spatiotemporal partial observability. The architecture addresses spatiotemporal constraints via three modules: (1) the CoProposer mitigates temporal uncertainty by verifying candidate actions via predictive rollouts; (2) the Negotiator overcomes spatial myopia by resolving conflicts through mean-field statistical aggregation; and (3) the Introspector ensures continuous adaptation by analyzing historical experience to refine strategies via semantic gradient descent. Extensive evaluations on two complex long-horizon tasks, cooperative adaptive cruise control and pandemic control, demonstrate that our framework effectively mitigates spatiotemporal partial observability through spatial and temporal strategies, enabling robust coordination.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.