Papers
Topics
Authors
Recent
Search
2000 character limit reached

Surgical Refusal Ablation: Disentangling Safety from Intelligence via Concept-Guided Spectral Cleaning

Published 13 Jan 2026 in cs.CL | (2601.08489v1)

Abstract: Safety-aligned LLMs systematically refuse harmful requests. While activation steering can modulate refusal, ablating the raw "refusal vector" calculated from contrastive harmful and harmless prompts often causes collateral damage and distribution drift. We argue this degradation occurs because the raw vector is polysemantic, entangling the refusal signal with core capability circuits and linguistic style. We introduce Surgical Refusal Ablation (SRA) to distill these steering directions. SRA constructs a registry of independent Concept Atoms representing protected capabilities and stylistic confounds, then uses ridge-regularized spectral residualization to orthogonalize the refusal vector against these directions. This yields a clean refusal direction that targets refusal-relevant structure while minimizing disruption to the model's semantic geometry. Across five models (Qwen3-VL and Ministral series), SRA achieves deep refusal reduction (0-2%) with negligible perplexity impact on Wikitext-2 (mean delta PPL approx. 0.02) and minimal distribution drift. Notably, standard ablation on Qwen3-VL-4B induces severe drift (first-token KL = 2.088), whereas SRA maintains the original distribution (KL = 0.044) while achieving the same 0% refusal rate. Using teacher-forced perplexity on GSM8K and MBPP as a high-resolution capability proxy, we show SRA preserves math and code distributions. These results suggest that common "model damage" is often "Ghost Noise," defined as the spectral bleeding of the dirty refusal direction into capability subspaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.