AgriAgent: Contract-Driven Planning and Capability-Aware Tool Orchestration in Real-World Agriculture
Abstract: Intelligent agent systems in real-world agricultural scenarios must handle diverse tasks under multimodal inputs, ranging from lightweight information understanding to complex multi-step execution. However, most existing approaches rely on a unified execution paradigm, which struggles to accommodate large variations in task complexity and incomplete tool availability commonly observed in agricultural environments. To address this challenge, we propose AgriAgent, a two-level agent framework for real-world agriculture. AgriAgent adopts a hierarchical execution strategy based on task complexity: simple tasks are handled through direct reasoning by modality-specific agents, while complex tasks trigger a contract-driven planning mechanism that formulates tasks as capability requirements and performs capability-aware tool orchestration and dynamic tool generation, enabling multi-step and verifiable execution with failure recovery. Experimental results show that AgriAgent achieves higher execution success rates and robustness on complex tasks compared to existing tool-centric agent baselines that rely on unified execution paradigms. All code, data will be released at after our work be accepted to promote reproducible research.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.