Peformance Isolation for Inference Processes in Edge GPU Systems
Abstract: This work analyzes the main isolation mechanisms available in modern NVIDIA GPUs: MPS, MIG, and the recent Green Contexts, to ensure predictable inference time in safety-critical applications using deep learning models. The experimental methodology includes performance tests, evaluation of partitioning impact, and analysis of temporal isolation between processes, considering both the NVIDIA A100 and Jetson Orin platforms. It is observed that MIG provides a high level of isolation. At the same time, Green Contexts represent a promising alternative for edge devices by enabling fine-grained SM allocation with low overhead, albeit without memory isolation. The study also identifies current limitations and outlines potential research directions to improve temporal predictability in shared GPUs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.