Advanced computing for reproducibility of astronomy Big Data Science, with a showcase of AMIGA and the SKA Science prototype
Abstract: The Square Kilometre Array Observatory (SKAO) faces un- precedented technological challenges due to the vast scale and complexity of its data. This paper provides an overview of research by the AMIGA group to address these computing and reproducibility challenges. We present advancements in semantic data models, analysis services integrated into federated infrastructures, and the application to astronomy studies of techniques that enhance research transparency. By showcasing these astronomy work, we demonstrate that achieving reproducible science in the Big Data era is feasible. However, we conclude that for the SKAO to succeed, the development of the SKA Regional Centre Network (SRCNet) must explicitly incorporate these reproducibility requirements into its fundamental architectural design. Embedding these standards is crucial to enable the global community to conduct verifiable and sustainable research within a federated environment.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.