Papers
Topics
Authors
Recent
2000 character limit reached

Stereo Audio Rendering for Personal Sound Zones Using a Binaural Spatially Adaptive Neural Network (BSANN)

Published 10 Jan 2026 in eess.AS and cs.SD | (2601.06621v1)

Abstract: A binaural rendering framework for personal sound zones (PSZs) is proposed to enable multiple head-tracked listeners to receive fully independent stereo audio programs. Current PSZ systems typically rely on monophonic rendering and therefore cannot control the left and right ears separately, which limits the quality and accuracy of spatial imaging. The proposed method employs a Binaural Spatially Adaptive Neural Network (BSANN) to generate ear-optimized loudspeaker filters that reconstruct the desired acoustic field at each ear of multiple listeners. The framework integrates anechoically measured loudspeaker frequency responses, analytically modeled transducer directivity, and rigid-sphere head-related transfer functions (HRTFs) to enhance acoustic accuracy and spatial rendering fidelity. An explicit active crosstalk cancellation (XTC) stage further improves three-dimensional spatial perception. Experiments show significant gains in measured objective performance metrics, including inter-zone isolation (IZI), inter-program isolation (IPI), and crosstalk cancellation (XTC), with log-frequency-weighted values of 10.23/10.03 dB (IZI), 11.11/9.16 dB (IPI), and 10.55/11.13 dB (XTC), respectively, over 100-20,000 Hz. The combined use of ear-wise control, accurate acoustic modeling, and integrated active XTC produces a unified rendering method that delivers greater isolation performance, increased robustness to room asymmetry, and more faithful spatial reproduction in real acoustic environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.