Papers
Topics
Authors
Recent
2000 character limit reached

Lightweight Resolution-Aware Audio Deepfake Detection via Cross-Scale Attention and Consistency Learning

Published 10 Jan 2026 in eess.AS and cs.SD | (2601.06560v1)

Abstract: Audio deepfake detection has become increasingly challenging due to rapid advances in speech synthesis and voice conversion technologies, particularly under channel distortions, replay attacks, and real-world recording conditions. This paper proposes a resolution-aware audio deepfake detection framework that explicitly models and aligns multi-resolution spectral representations through cross-scale attention and consistency learning. Unlike conventional single-resolution or implicit feature-fusion approaches, the proposed method enforces agreement across complementary time--frequency scales. The proposed framework is evaluated on three representative benchmarks: ASVspoof 2019 (LA and PA), the Fake-or-Real (FoR) dataset, and the In-the-Wild Audio Deepfake dataset under a speaker-disjoint protocol. The method achieves near-perfect performance on ASVspoof LA (EER 0.16%), strong robustness on ASVspoof PA (EER 5.09%), FoR rerecorded audio (EER 4.54%), and in-the-wild deepfakes (AUC 0.98, EER 4.81%), significantly outperforming single-resolution and non-attention baselines under challenging conditions. The proposed model remains lightweight and efficient, requiring only 159k parameters and less than 1~GFLOP per inference, making it suitable for practical deployment. Comprehensive ablation studies confirm the critical contributions of cross-scale attention and consistency learning, while gradient-based interpretability analysis reveals that the model learns resolution-consistent and semantically meaningful spectral cues across diverse spoofing conditions. These results demonstrate that explicit cross-resolution modeling provides a principled, robust, and scalable foundation for next-generation audio deepfake detection systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.