Papers
Topics
Authors
Recent
Search
2000 character limit reached

L-RAG: Balancing Context and Retrieval with Entropy-Based Lazy Loading

Published 10 Jan 2026 in cs.IR, cs.AI, and cs.CL | (2601.06551v1)

Abstract: Retrieval-Augmented Generation (RAG) has emerged as the predominant paradigm for grounding LLM outputs in factual knowledge, effectively mitigating hallucinations. However, conventional RAG systems operate under a "retrieve-always" assumption, querying vector databases for every input regardless of query complexity. This static approach incurs substantial computational overhead and inference latency, particularly problematic for high-throughput production deployments. We introduce L-RAG (Lazy Retrieval-Augmented Generation), an adaptive framework that implements hierarchical context management through entropy-based gating. L-RAG employs a two-tier architecture: queries are first processed with a compact document summary, and expensive chunk retrieval is triggered only when the model's predictive entropy exceeds a calibrated threshold, signaling genuine uncertainty. Through experiments on SQuAD 2.0 (N=500) using the Phi-2 model, we demonstrate that L-RAG provides a tunable accuracy-efficiency trade-off: at a conservative threshold (tau=0.5), L-RAG achieves 78.2% accuracy, matching Standard RAG (77.8%), with 8% retrieval reduction; at a balanced threshold (tau=1.0), retrieval reduction increases to 26% with modest accuracy trade-off (76.0%). Latency analysis shows that L-RAG saves 80-210ms per query when retrieval latency exceeds 500ms. Analysis of entropy distributions reveals statistically significant separation (p < 0.001) between correct predictions (H=1.72) and errors (H=2.20), validating entropy as a reliable uncertainty signal. L-RAG offers a practical, training-free approach toward more efficient RAG deployment, providing system architects with a configurable knob to balance accuracy and throughput requirements.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.