Papers
Topics
Authors
Recent
Search
2000 character limit reached

GroupSegment-SHAP: Shapley Value Explanations with Group-Segment Players for Multivariate Time Series

Published 3 Jan 2026 in cs.LG, cs.AI, and cs.GT | (2601.06114v1)

Abstract: Multivariate time-series models achieve strong predictive performance in healthcare, industry, energy, and finance, but how they combine cross-variable interactions with temporal dynamics remains unclear. SHapley Additive exPlanations (SHAP) are widely used for interpretation. However, existing time-series variants typically treat the feature and time axes independently, fragmenting structural signals formed jointly by multiple variables over specific intervals. We propose GroupSegment SHAP (GS-SHAP), which constructs explanatory units as group-segment players based on cross-variable dependence and distribution shifts over time, and then quantifies each unit's contribution via Shapley attribution. We evaluate GS-SHAP across four real-world domains: human activity recognition, power-system forecasting, medical signal analysis, and financial time series, and compare it with KernelSHAP, TimeSHAP, SequenceSHAP, WindowSHAP, and TSHAP. GS-SHAP improves deletion-based faithfulness (DeltaAUC) by about 1.7x on average over time-series SHAP baselines, while reducing wall-clock runtime by about 40 percent on average under matched perturbation budgets. A financial case study shows that GS-SHAP identifies interpretable multivariate-temporal interactions among key market variables during high-volatility regimes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.