Papers
Topics
Authors
Recent
2000 character limit reached

Judge Model for Large-scale Multimodality Benchmarks

Published 3 Jan 2026 in cs.LG, cs.AI, cs.CL, cs.CV, and cs.MA | (2601.06106v1)

Abstract: We propose a dedicated multimodal Judge Model designed to provide reliable, explainable evaluation across a diverse suite of tasks. Our benchmark spans text, audio, image, and video modalities, drawing from carefully sampled public datasets with fixed seeds to ensure reproducibility and minimize train test leakage. Instead of simple scoring, our framework aggregates multimodal judgments, analyzes the quality and reasoning consistency of model outputs, and generates diagnostic feedback. We evaluate several MLLMs, including Gemini 2.5, Phi 4, and Qwen 2.5, across 280 multimodal samples and compare judge model assessments with human annotators. Results show strong alignment between the Judge Model and human scores, demonstrating its potential as a scalable, interpretable evaluation pipeline for future multimodal AI research.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.