FACTUM: Mechanistic Detection of Citation Hallucination in Long-Form RAG
Abstract: Retrieval-Augmented Generation (RAG) models are critically undermined by citation hallucinations, a deceptive failure where a model confidently cites a source that fails to support its claim. Existing work often attributes hallucination to a simple over-reliance on the model's parametric knowledge. We challenge this view and introduce FACTUM (Framework for Attesting Citation Trustworthiness via Underlying Mechanisms), a framework of four mechanistic scores measuring the distinct contributions of a model's attention and FFN pathways, and the alignment between them. Our analysis reveals two consistent signatures of correct citation: a significantly stronger contribution from the model's parametric knowledge and greater use of the attention sink for information synthesis. Crucially, we find the signature of a correct citation is not static but evolves with model scale. For example, the signature of a correct citation for the Llama-3.2-3B model is marked by higher pathway alignment, whereas for the Llama-3.1-8B model, it is characterized by lower alignment, where pathways contribute more distinct, orthogonal information. By capturing this complex, evolving signature, FACTUM outperforms state-of-the-art baselines by up to 37.5% in AUC. Our findings reframe citation hallucination as a complex, scale-dependent interplay between internal mechanisms, paving the way for more nuanced and reliable RAG systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.