Efficient Temporal-aware Matryoshka Adaptation for Temporal Information Retrieval (2601.05549v1)
Abstract: Retrievers are a key bottleneck in Temporal Retrieval-Augmented Generation (RAG) systems: failing to retrieve temporally relevant context can degrade downstream generation, regardless of LLM reasoning. We propose Temporal-aware Matryoshka Representation Learning (TMRL), an efficient method that equips retrievers with temporal-aware Matryoshka embeddings. TMRL leverages the nested structure of Matryoshka embeddings to introduce a temporal subspace, enhancing temporal encoding while preserving general semantic representations. Experiments show that TMRL efficiently adapts diverse text embedding models, achieving competitive temporal retrieval and temporal RAG performance compared to prior Matryoshka-based non-temporal methods and prior temporal methods, while enabling flexible accuracy-efficiency trade-offs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.