Papers
Topics
Authors
Recent
2000 character limit reached

Closing the Modality Reasoning Gap for Speech Large Language Models

Published 9 Jan 2026 in cs.CL, cs.SD, and eess.AS | (2601.05543v1)

Abstract: Although speech LLMs have achieved notable progress, a substantial modality reasoning gap remains: their reasoning performance on speech inputs is markedly weaker than on text. This gap could be associated with representational drift across Transformer layers and behavior deviations in long-chain reasoning. To address this issue, we introduce TARS, a reinforcement-learning framework that aligns text-conditioned and speech-conditioned trajectories through an asymmetric reward design. The framework employs two dense and complementary signals: representation alignment, which measures layer-wise hidden-state similarity between speech- and text-conditioned trajectories, and behavior alignment, which evaluates semantic consistency between generated outputs and reference text completions. Experiments on challenging reasoning benchmarks, including MMSU and OBQA, show that our approach significantly narrows the modality reasoning gap and achieves state-of-the-art performance among 7B-scale Speech LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 14 likes about this paper.