LEAPS: An LLM-Empowered Adaptive Plugin for Taobao AI Search
Abstract: The rapid advancement of LLMs has reshaped user search cognition, driving a paradigm shift from discrete keyword-based search to high-dimensional conversational interaction. However, existing e-commerce search architectures face a critical capability deficit in adapting to this change. Users are often caught in a dilemma: precise natural language descriptions frequently trigger zero-result scenarios, while the forced simplification of queries leads to decision overload from noisy, generic results. To tackle this challenge, we propose LEAPS (LLM-Empowered Adaptive Plugin for Taobao AI Search), which seamlessly upgrades traditional search systems via a "Broaden-and-Refine" paradigm. Specifically, it attaches plugins to both ends of the search pipeline: (1) Upstream, a Query Expander acts as an intent translator. It employs a novel three-stage training strategy--inverse data augmentation, posterior-knowledge supervised fine-tuning, and diversity-aware reinforcement learning--to generate adaptive and complementary query combinations that maximize the candidate product set. (2) Downstream, a Relevance Verifier serves as a semantic gatekeeper. By synthesizing multi-source data (e.g., OCR text, reviews) and leveraging chain-of-thought reasoning, it precisely filters noise to resolve selection overload. Extensive offline experiments and online A/B testing demonstrate that LEAPS significantly enhances conversational search experiences. Crucially, its non-invasive architecture preserves established retrieval performance optimized for short-text queries, while simultaneously allowing for low-cost integration into diverse back-ends. Fully deployed on Taobao AI Search since August 2025, LEAPS currently serves hundreds of millions of users monthly.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.