Papers
Topics
Authors
Recent
Search
2000 character limit reached

Jailbreaking Large Language Models through Iterative Tool-Disguised Attacks via Reinforcement Learning

Published 9 Jan 2026 in cs.CR and cs.AI | (2601.05466v1)

Abstract: LLMs have demonstrated remarkable capabilities across diverse applications, however, they remain critically vulnerable to jailbreak attacks that elicit harmful responses violating human values and safety guidelines. Despite extensive research on defense mechanisms, existing safeguards prove insufficient against sophisticated adversarial strategies. In this work, we propose iMIST (\underline{i}nteractive \underline{M}ulti-step \underline{P}rogre\underline{s}sive \underline{T}ool-disguised Jailbreak Attack), a novel adaptive jailbreak method that synergistically exploits vulnerabilities in current defense mechanisms. iMIST disguises malicious queries as normal tool invocations to bypass content filters, while simultaneously introducing an interactive progressive optimization algorithm that dynamically escalates response harmfulness through multi-turn dialogues guided by real-time harmfulness assessment. Our experiments on widely-used models demonstrate that iMIST achieves higher attack effectiveness, while maintaining low rejection rates. These results reveal critical vulnerabilities in current LLM safety mechanisms and underscore the urgent need for more robust defense strategies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.