Papers
Topics
Authors
Recent
2000 character limit reached

A zone-based training approach for last-mile routing using Graph Neural Networks and Pointer Networks

Published 8 Jan 2026 in cs.LG | (2601.04705v1)

Abstract: Rapid e-commerce growth has pushed last-mile delivery networks to their limits, where small routing gains translate into lower costs, faster service, and fewer emissions. Classical heuristics struggle to adapt when travel times are highly asymmetric (e.g., one-way streets, congestion). A deep learning-based approach to the last-mile routing problem is presented to generate geographical zones composed of stop sequences to minimize last-mile delivery times. The presented approach is an encoder-decoder architecture. Each route is represented as a complete directed graph whose nodes are stops and whose edge weights are asymmetric travel times. A Graph Neural Network encoder produces node embeddings that captures the spatial relationships between stops. A Pointer Network decoder then takes the embeddings and the route's start node to sequentially select the next stops, assigning a probability to each unvisited node as the next destination. Cells of a Discrete Global Grid System which contain route stops in the training data are obtained and clustered to generate geographical zones of similar size in which the process of training and inference are divided. Subsequently, a different instance of the model is trained per zone only considering the stops of the training routes which are included in that zone. This approach is evaluated using the Los Angeles routes from the 2021 Amazon Last Mile Routing Challenge. Results from general and zone-based training are compared, showing a reduction in the average predicted route length in the zone-based training compared to the general training. The performance improvement of the zone-based approach becomes more pronounced as the number of stops per route increases.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.