Concept Tokens: Learning Behavioral Embeddings Through Concept Definitions
Abstract: We propose Concept Tokens, a lightweight method that adds a new special token to a pretrained LLM and learns only its embedding from multiple natural language definitions of a target concept, where occurrences of the concept are replaced by the new token. The LLM is kept frozen and the embedding is optimized with the standard language-modeling objective. We evaluate Concept Tokens in three settings. First, we study hallucinations in closed-book question answering on HotpotQA and find a directional effect: negating the hallucination token reduces hallucinated answers mainly by increasing abstentions, whereas asserting it increases hallucinations and lowers precision. Second, we induce recasting, a pedagogical feedback strategy for second language teaching, and observe the same directional effect. Moreover, compared to providing the full definitional corpus in-context, concept tokens better preserve compliance with other instructions (e.g., asking follow-up questions). Finally, we include a qualitative study with the Eiffel Tower and a fictional "Austral Tower" to illustrate what information the learned embeddings capture and where their limitations emerge. Overall, Concept Tokens provide a compact control signal learned from definitions that can steer behavior in frozen LLMs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.