Papers
Topics
Authors
Recent
2000 character limit reached

Sound Event Detection with Boundary-Aware Optimization and Inference

Published 7 Jan 2026 in eess.AS and cs.SD | (2601.04178v1)

Abstract: Temporal detection problems appear in many fields including time-series estimation, activity recognition and sound event detection (SED). In this work, we propose a new approach to temporal event modeling by explicitly modeling event onsets and offsets, and by introducing boundary-aware optimization and inference strategies that substantially enhance temporal event detection. The presented methodology incorporates new temporal modeling layers - Recurrent Event Detection (RED) and Event Proposal Network (EPN) - which, together with tailored loss functions, enable more effective and precise temporal event detection. We evaluate the proposed method in the SED domain using a subset of the temporally-strongly annotated portion of AudioSet. Experimental results show that our approach not only outperforms traditional frame-wise SED models with state-of-the-art post-processing, but also removes the need for post-processing hyperparameter tuning, and scales to achieve new state-of-the-art performance across all AudioSet Strong classes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.