Iterative Structured Pruning for Large Language Models with Multi-Domain Calibration
Abstract: LLMs have achieved remarkable success across a wide spectrum of natural language processing tasks. However, their ever-growing scale introduces significant barriers to real-world deployment, including substantial computational overhead, memory footprint, and inference latency. While model pruning presents a viable solution to these challenges, existing unstructured pruning techniques often yield irregular sparsity patterns that necessitate specialized hardware or software support. In this work, we explore structured pruning, which eliminates entire architectural components and maintains compatibility with standard hardware accelerators. We introduce a novel structured pruning framework that leverages a hybrid multi-domain calibration set and an iterative calibration strategy to effectively identify and remove redundant channels. Extensive experiments on various models across diverse downstream tasks show that our approach achieves significant compression with minimal performance degradation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.