gPC-based robustness analysis of neural systems through probabilistic recurrence metrics (2601.02606v1)
Abstract: Neuronal systems often preserve their characteristic functions and signalling patterns, also referred to as regimes, despite parametric uncertainties and variations. For neural models having uncertain parameters with a known probability distribution, probabilistic robustness analysis (PRA) allows us to understand and quantify under which uncertainty conditions a regime is preserved in expectation. We introduce a new computational framework for the efficient and systematic PRA of dynamical systems in neuroscience and we show its efficacy in analysing well-known neural models that exhibit multiple dynamical regimes: the Hindmarsh-Rose model for single neurons and the Jansen-Rit model for cortical columns. Given a model subject to parametric uncertainty, we employ generalised polynomial chaos to derive mean neural activity signals, which are then used to assess the amount of parametric uncertainty that the system can withstand while preserving the current regime, thereby quantifying the regime's robustness to such uncertainty. To assess persistence of regimes, we propose new metrics, which we apply to recurrence plots obtained from the mean neural activity signals. The overall result is a novel, general computational methodology that combines recurrence plot analysis and systematic persistence analysis to assess how much the uncertain model parameters can vary, with respect to their nominal value, while preserving the nominal regimes in expectation. We summarise the PRA results through probabilistic regime preservation (PRP) plots, which capture the effect of parametric uncertainties on the robustness of dynamical regimes in the considered models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.