Agentic AI in Remote Sensing: Foundations, Taxonomy, and Emerging Systems
Abstract: The paradigm of Earth Observation analysis is shifting from static deep learning models to autonomous agentic AI. Although recent vision foundation models and multimodal LLMs advance representation learning, they often lack the sequential planning and active tool orchestration required for complex geospatial workflows. This survey presents the first comprehensive review of agentic AI in remote sensing. We introduce a unified taxonomy distinguishing between single-agent copilots and multi-agent systems while analyzing architectural foundations such as planning mechanisms, retrieval-augmented generation, and memory structures. Furthermore, we review emerging benchmarks that move the evaluation from pixel-level accuracy to trajectory-aware reasoning correctness. By critically examining limitations in grounding, safety, and orchestration, this work outlines a strategic roadmap for the development of robust, autonomous geospatial intelligence.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.