Papers
Topics
Authors
Recent
2000 character limit reached

Point-SRA: Self-Representation Alignment for 3D Representation Learning

Published 5 Jan 2026 in cs.CV | (2601.01746v1)

Abstract: Masked autoencoders (MAE) have become a dominant paradigm in 3D representation learning, setting new performance benchmarks across various downstream tasks. Existing methods with fixed mask ratio neglect multi-level representational correlations and intrinsic geometric structures, while relying on point-wise reconstruction assumptions that conflict with the diversity of point cloud. To address these issues, we propose a 3D representation learning method, termed Point-SRA, which aligns representations through self-distillation and probabilistic modeling. Specifically, we assign different masking ratios to the MAE to capture complementary geometric and semantic information, while the MeanFlow Transformer (MFT) leverages cross-modal conditional embeddings to enable diverse probabilistic reconstruction. Our analysis further reveals that representations at different time steps in MFT also exhibit complementarity. Therefore, a Dual Self-Representation Alignment mechanism is proposed at both the MAE and MFT levels. Finally, we design a Flow-Conditioned Fine-Tuning Architecture to fully exploit the point cloud distribution learned via MeanFlow. Point-SRA outperforms Point-MAE by 5.37% on ScanObjectNN. On intracranial aneurysm segmentation, it reaches 96.07% mean IoU for arteries and 86.87% for aneurysms. For 3D object detection, Point-SRA achieves 47.3% AP@50, surpassing MaskPoint by 5.12%.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.