Matrix Kloosterman Sums, Random Matrix Statistics, and Cryptography
Abstract: This paper presents a comprehensive study of matrix Kloosterman sums, including their computational aspects, distributional behavior, and applications in cryptographic analysis. Building on the work of [Zelingher, 2023], we develop algorithms for evaluating these sums via Green's polynomials and establish a general framework for analyzing their statistical distributions. We further investigate the associated $L$-functions and clarify their relationships with symmetric functions and random matrix theory. We show that, analogous to the eigenvalue statistics of random matrices in compact Lie groups such as $SU(n)$ and $Sp(2n)$, the normalized values of matrix Kloosterman sums exhibit Sato-Tate equidistribution. Finally, we apply this framework to distinguish truly random sequences from those exhibiting subtle algebraic biases, and we propose a novel spectral test for cryptographic security based on the distributional signatures of matrix Kloosterman sums.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.