Interpolative Refinement of Gap Bound Conditions for Singular Parabolic Double Phase Problems
Abstract: We consider inhomogeneous singular parabolic double phase equations of type $$ u_t-\operatorname{div}(|Du|{p-2}Du + a(x,t)|Du|{q-2}Du)=-\operatorname{div} (|F|{p-2}F + a(x,t)|F|{q-2}F) $$ in $Ω_T := Ω\times (0,T)\subset \mathbb{R}n\times \mathbb{R}$, where $\frac{2n}{n+2}<p\leq 2$, $p<q$ and $0\leq a(\cdot)\in C{α,\fracα{2}}(Ω_T)$. We establish gradient higher integrability results for weak solutions to the above problems under one of the following two assumptions: $$ u\in L\infty (Ω_T) \quad\text{and}\quad q\leq p +\frac{α(p(n+2)-2n)}{4}, $$ or $$ u\in C(0,T;Ls(Ω)),\quad s\geq 2 \quad\text{and}\quad q\leq p+\frac{αμ_s}{n+s}, $$ where $μ_s := \frac{(p(n+2)-2n)s}{4}$. These results yield an interpolation refinement of gap bounds in the singular parabolic double phase setting.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.