Papers
Topics
Authors
Recent
2000 character limit reached

Multiscale replay: A robust algorithm for stochastic variational inequalities with a Markovian buffer

Published 4 Jan 2026 in math.OC and stat.ML | (2601.01502v1)

Abstract: We introduce the Multiscale Experience Replay (MER) algorithm for solving a class of stochastic variational inequalities (VIs) in settings where samples are generated from a Markov chain and we have access to a memory buffer to store them. Rather than uniformly sampling from the buffer, MER utilizes a multi-scale sampling scheme to emulate the behavior of VI algorithms designed for independent and identically distributed samples, overcoming bias in the de facto serial scheme and thereby accelerating convergence. Notably, unlike standard sample-skipping variants of serial algorithms, MER is robust in that it achieves this acceleration in iteration complexity whenever possible, and without requiring knowledge of the mixing time of the Markov chain. We also discuss applications of MER, particularly in policy evaluation with temporal difference learning and in training generalized linear models with dependent data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.