Papers
Topics
Authors
Recent
2000 character limit reached

On the Practical Estimation and Interpretation of Rényi Transfer Entropy

Published 4 Jan 2026 in nlin.PS and stat.ML | (2601.01497v1)

Abstract: Rényi transfer entropy (RTE) is a generalization of classical transfer entropy that replaces Shannon's entropy with Rényi's information measure. This, in turn, introduces a new tunable parameter $α$, which accounts for sensitivity to low- or high-probability events. Although RTE shows strong potential for analyzing causal relations in complex, non-Gaussian systems, its practical use is limited, primarily due to challenges related to its accurate estimation and interpretation. These difficulties are especially pronounced when working with finite, high-dimensional, or heterogeneous datasets. In this paper, we systematically study the performance of a k-nearest neighbor estimator for both Rényi entropy (RE) and RTE using various synthetic data sets with clear cause-and-effect relationships inherent to their construction. We test the estimator across a broad range of parameters, including sample size, dimensionality, memory length, and Rényi order $α$. In particular, we apply the estimator to a set of simulated processes with increasing structural complexity, ranging from linear dynamics to nonlinear systems with multi-source couplings. To address interpretational challenges arising from potentially negative RE and RTE values, we introduce three reliability conditions and formulate practical guidelines for tuning the estimator parameters. We show that when the reliability conditions are met and the parameters are calibrated accordingly, the resulting effective RTE estimates accurately capture directional information flow across a broad range of scenarios. Results obtained show that the explanatory power of RTE depends sensitively on the choice of the Rényi parameter $α$. This highlights the usefulness of the RTE framework for identifying the drivers of extreme behavior in complex systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.