Papers
Topics
Authors
Recent
2000 character limit reached

The Optimal Sample Complexity of Linear Contracts

Published 4 Jan 2026 in cs.GT, cs.AI, and cs.LG | (2601.01496v1)

Abstract: In this paper, we settle the problem of learning optimal linear contracts from data in the offline setting, where agent types are drawn from an unknown distribution and the principal's goal is to design a contract that maximizes her expected utility. Specifically, our analysis shows that the simple Empirical Utility Maximization (EUM) algorithm yields an $\varepsilon$-approximation of the optimal linear contract with probability at least $1-δ$, using just $O(\ln(1/δ) / \varepsilon2)$ samples. This result improves upon previously known bounds and matches a lower bound from Duetting et al. [2025] up to constant factors, thereby proving its optimality. Our analysis uses a chaining argument, where the key insight is to leverage a simple structural property of linear contracts: their expected reward is non-decreasing. This property, which holds even though the utility function itself is non-monotone and discontinuous, enables the construction of fine-grained nets required for the chaining argument, which in turn yields the optimal sample complexity. Furthermore, our proof establishes the stronger guarantee of uniform convergence: the empirical utility of every linear contract is a $\varepsilon$-approximation of its true expectation with probability at least $1-δ$, using the same optimal $O(\ln(1/δ) / \varepsilon2)$ sample complexity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.