Papers
Topics
Authors
Recent
2000 character limit reached

Accelerating Storage-Based Training for Graph Neural Networks

Published 4 Jan 2026 in cs.LG, cs.AI, and cs.DB | (2601.01473v1)

Abstract: Graph neural networks (GNNs) have achieved breakthroughs in various real-world downstream tasks due to their powerful expressiveness. As the scale of real-world graphs has been continuously growing, \textit{a storage-based approach to GNN training} has been studied, which leverages external storage (e.g., NVMe SSDs) to handle such web-scale graphs on a single machine. Although such storage-based GNN training methods have shown promising potential in large-scale GNN training, we observed that they suffer from a severe bottleneck in data preparation since they overlook a critical challenge: \textit{how to handle a large number of small storage I/Os}. To address the challenge, in this paper, we propose a novel storage-based GNN training framework, named \textsf{AGNES}, that employs a method of \textit{block-wise storage I/O processing} to fully utilize the I/O bandwidth of high-performance storage devices. Moreover, to further enhance the efficiency of each storage I/O, \textsf{AGNES} employs a simple yet effective strategy, \textit{hyperbatch-based processing} based on the characteristics of real-world graphs. Comprehensive experiments on five real-world graphs reveal that \textsf{AGNES} consistently outperforms four state-of-the-art methods, by up to 4.1$\times$ faster than the best competitor. Our code is available at https://github.com/Bigdasgit/agnes-kdd26.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.