Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Bayesian Message Passing under Structural Uncertainty (2601.01207v1)

Published 3 Jan 2026 in cs.LG and stat.ML

Abstract: Semi-supervised learning on real-world graphs is frequently challenged by heterophily, where the observed graph is unreliable or label-disassortative. Many existing graph neural networks either rely on a fixed adjacency structure or attempt to handle structural noise through regularization. In this work, we explicitly capture structural uncertainty by modeling a posterior distribution over signed adjacency matrices, allowing each edge to be positive, negative, or absent. We propose a sparse signed message passing network that is naturally robust to edge noise and heterophily, which can be interpreted from a Bayesian perspective. By combining (i) posterior marginalization over signed graph structures with (ii) sparse signed message aggregation, our approach offers a principled way to handle both edge noise and heterophily. Experimental results demonstrate that our method outperforms strong baseline models on heterophilic benchmarks under both synthetic and real-world structural noise.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.