Self-Training the Neurochaos Learning Algorithm
Abstract: In numerous practical applications, acquiring substantial quantities of labelled data is challenging and expensive, but unlabelled data is readily accessible. Conventional supervised learning methods frequently underperform in scenarios characterised by little labelled data or imbalanced datasets. This study introduces a hybrid semi-supervised learning (SSL) architecture that integrates Neurochaos Learning (NL) with a threshold-based Self-Training (ST) method to overcome this constraint. The NL architecture converts input characteristics into chaos-based ring-rate representations that encapsulate nonlinear relationships within the data, whereas ST progressively enlarges the labelled set utilising high-confidence pseudo-labelled samples. The model's performance is assessed using ten benchmark datasets and five machine learning classifiers, with 85% of the training data considered unlabelled and just 15% utilised as labelled data. The proposed Self-Training Neurochaos Learning (NL+ST) architecture consistently attains superior performance gain relative to standalone ST models, especially on limited, nonlinear and imbalanced datasets like Iris (188.66%), Wine (158.58%) and Glass Identification (110.48%). The results indicate that using chaos-based feature extraction with SSL improves generalisation, resilience, and classification accuracy in low-data contexts.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.