Papers
Topics
Authors
Recent
2000 character limit reached

Histogram Assisted Quality Aware Generative Model for Resolution Invariant NIR Image Colorization

Published 3 Jan 2026 in cs.CV and eess.IV | (2601.01103v1)

Abstract: We present HAQAGen, a unified generative model for resolution-invariant NIR-to-RGB colorization that balances chromatic realism with structural fidelity. The proposed model introduces (i) a combined loss term aligning the global color statistics through differentiable histogram matching, perceptual image quality measure, and feature based similarity to preserve texture information, (ii) local hue-saturation priors injected via Spatially Adaptive Denormalization (SPADE) to stabilize chromatic reconstruction, and (iii) texture-aware supervision within a Mamba backbone to preserve fine details. We introduce an adaptive-resolution inference engine that further enables high-resolution translation without sacrificing quality. Our proposed NIR-to-RGB translation model simultaneously enforces global color statistics and local chromatic consistency, while scaling to native resolutions without compromising texture fidelity or generalization. Extensive evaluations on FANVID, OMSIV, VCIP2020, and RGB2NIR using different evaluation metrics demonstrate consistent improvements over state-of-the-art baseline methods. HAQAGen produces images with sharper textures, natural colors, attaining significant gains as per perceptual metrics. These results position HAQAGen as a scalable and effective solution for NIR-to-RGB translation across diverse imaging scenarios. Project Page: https://rajeev-dw9.github.io/HAQAGen/

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.