Papers
Topics
Authors
Recent
2000 character limit reached

Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations

Published 1 Jan 2026 in cs.CL and cs.AI | (2601.00454v1)

Abstract: Guardrail models are essential for ensuring the safety of LLM deployments, but processing full multi-turn conversation histories incurs significant computational cost. We propose Defensive M2S, a training paradigm that fine-tunes guardrail models on Multi-turn to Single-turn (M2S) compressed conversations rather than complete dialogue histories. We provide a formal complexity analysis showing that M2S reduces training cost from $O(n2)$ to $O(n)$ for $n$-turn conversations. Empirically, on our training dataset (779 samples, avg. 10.6 turns), M2S requires only 169K tokens compared to 15.7M tokens for the multi-turn baseline -- a 93$\times$ reduction. We evaluate Defensive M2S across three guardrail model families (LlamaGuard, Nemotron, Qwen3Guard) and three compression templates (hyphenize, numberize, pythonize) on SafeDialBench, a comprehensive multi-turn jailbreak benchmark. Our best configuration, Qwen3Guard with hyphenize compression, achieves 93.8% attack detection recall while reducing inference tokens by 94.6% (from 3,231 to 173 tokens per conversation). This represents a 38.9 percentage point improvement over the baseline while dramatically reducing both training and inference costs. Our findings demonstrate that M2S compression can serve as an effective efficiency technique for guardrail deployment, enabling scalable safety screening of long multi-turn conversations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.