Machine Learning-Aided Optimal Control of a Qubit Subjected to External Noise (2512.24393v1)
Abstract: We apply a machine-learning-enhanced greybox framework to a quantum optimal control protocol for open quantum systems. Combining a whitebox physical model with a neural-network blackbox trained on synthetic data, the method captures non-Markovian noise effects and achieves gate fidelities above 90% under Random Telegraph and Ornstein-Uhlenbeck noise. Critical issues of the approach are discussed.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.