Papers
Topics
Authors
Recent
2000 character limit reached

Dirac solitons in one-dimensional nonlinear Schrödinger equations

Published 30 Dec 2025 in math.AP, math-ph, and math.FA | (2512.24089v1)

Abstract: In this paper we study a family of one-dimensional stationary cubic nonlinear Schrödinger (NLS) equations with periodic potentials and linear part displaying Dirac points in the dispersion relation. By introducing a suitable periodic perturbation, one can open a spectral gap around the Dirac-point energy. This allows to construct standing waves of the NLS equation whose leading-order profile is a modulation of Bloch waves by means of the components of a spinor solving an appropriate cubic nonlinear Dirac (NLD) equation. We refer to these solutions as Dirac solitons. Our analysis thus provides a rigorous justification for the use of the NLD equation as an effective model for the original NLS equation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.