Dirac solitons in one-dimensional nonlinear Schrödinger equations
Abstract: In this paper we study a family of one-dimensional stationary cubic nonlinear Schrödinger (NLS) equations with periodic potentials and linear part displaying Dirac points in the dispersion relation. By introducing a suitable periodic perturbation, one can open a spectral gap around the Dirac-point energy. This allows to construct standing waves of the NLS equation whose leading-order profile is a modulation of Bloch waves by means of the components of a spinor solving an appropriate cubic nonlinear Dirac (NLD) equation. We refer to these solutions as Dirac solitons. Our analysis thus provides a rigorous justification for the use of the NLD equation as an effective model for the original NLS equation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.