Papers
Topics
Authors
Recent
2000 character limit reached

Adversarial Lens: Exploiting Attention Layers to Generate Adversarial Examples for Evaluation (2512.23837v1)

Published 29 Dec 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Recent advances in mechanistic interpretability suggest that intermediate attention layers encode token-level hypotheses that are iteratively refined toward the final output. In this work, we exploit this property to generate adversarial examples directly from attention-layer token distributions. Unlike prompt-based or gradient-based attacks, our approach leverages model-internal token predictions, producing perturbations that are both plausible and internally consistent with the model's own generation process. We evaluate whether tokens extracted from intermediate layers can serve as effective adversarial perturbations for downstream evaluation tasks. We conduct experiments on argument quality assessment using the ArgQuality dataset, with LLaMA-3.1-Instruct-8B serving as both the generator and evaluator. Our results show that attention-based adversarial examples lead to measurable drops in evaluation performance while remaining semantically similar to the original inputs. However, we also observe that substitutions drawn from certain layers and token positions can introduce grammatical degradation, limiting their practical effectiveness. Overall, our findings highlight both the promise and current limitations of using intermediate-layer representations as a principled source of adversarial examples for stress-testing LLM-based evaluation pipelines.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.