Papers
Topics
Authors
Recent
2000 character limit reached

Entropy-Aware Speculative Decoding Toward Improved LLM Reasoning (2512.23765v1)

Published 29 Dec 2025 in cs.CL and cs.AI

Abstract: Speculative decoding (SD) accelerates LLM reasoning by using a small draft model to generate candidate tokens, which the target LLM either accepts directly or regenerates upon rejection. However, excessive alignment between the draft and target models constrains SD to the performance of the target LLM. To address this limitation, we propose Entropy-Aware Speculative Decoding (EASD), a training-free enhancement. Building on standard SD, EASD incorporates a dynamic entropy-based penalty. At each decoding step, we employ the entropy of the sampling distribution to quantify model uncertainty. When both models exhibit high entropy with substantial overlap among their top-N predictions, the corresponding token is rejected and re-sampled by the target LLM. This penalty prevents low-confidence errors from propagating. By incorporating draft-model verification, EASD enables the possibility of surpassing the target model's inherent performance. Experiments across multiple reasoning benchmarks demonstrate that EASD consistently outperforms existing SD methods and, in most cases, surpasses the target LLM itself. We further prove that the efficiency of EASD is comparable to that of SD. The code can be found in the Supplementary Materials.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.