Papers
Topics
Authors
Recent
2000 character limit reached

Calibrated Multi-Level Quantile Forecasting (2512.23671v1)

Published 29 Dec 2025 in stat.ML, cs.LG, math.OC, and stat.ME

Abstract: We present an online method for guaranteeing calibration of quantile forecasts at multiple quantile levels simultaneously. A sequence of $α$-level quantile forecasts is calibrated if the forecasts are larger than the target value at an $α$-fraction of time steps. We introduce a lightweight method called Multi-Level Quantile Tracker (MultiQT) that wraps around any existing point or quantile forecaster to produce corrected forecasts guaranteed to achieve calibration, even against adversarial distribution shifts, while ensuring that the forecasts are ordered -- e.g., the 0.5-level quantile forecast is never larger than the 0.6-level forecast. Furthermore, the method comes with a no-regret guarantee that implies it will not worsen the performance of an existing forecaster, asymptotically, with respect to the quantile loss. In experiments, we find that MultiQT significantly improves the calibration of real forecasters in epidemic and energy forecasting problems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 17 likes about this paper.