Papers
Topics
Authors
Recent
2000 character limit reached

Random Controlled Differential Equations (2512.23670v1)

Published 29 Dec 2025 in cs.LG and stat.ML

Abstract: We introduce a training-efficient framework for time-series learning that combines random features with controlled differential equations (CDEs). In this approach, large randomly parameterized CDEs act as continuous-time reservoirs, mapping input paths to rich representations. Only a linear readout layer is trained, resulting in fast, scalable models with strong inductive bias. Building on this foundation, we propose two variants: (i) Random Fourier CDEs (RF-CDEs): these lift the input signal using random Fourier features prior to the dynamics, providing a kernel-free approximation of RBF-enhanced sequence models; (ii) Random Rough DEs (R-RDEs): these operate directly on rough-path inputs via a log-ODE discretization, using log-signatures to capture higher-order temporal interactions while remaining stable and efficient. We prove that in the infinite-width limit, these model induces the RBF-lifted signature kernel and the rough signature kernel, respectively, offering a unified perspective on random-feature reservoirs, continuous-time deep architectures, and path-signature theory. We evaluate both models across a range of time-series benchmarks, demonstrating competitive or state-of-the-art performance. These methods provide a practical alternative to explicit signature computations, retaining their inductive bias while benefiting from the efficiency of random features.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.