Papers
Topics
Authors
Recent
2000 character limit reached

Toward Trustworthy Agentic AI: A Multimodal Framework for Preventing Prompt Injection Attacks (2512.23557v1)

Published 29 Dec 2025 in cs.CR and cs.AI

Abstract: Powerful autonomous systems, which reason, plan, and converse using and between numerous tools and agents, are made possible by LLMs, Vision-LLMs (VLMs), and new agentic AI systems, like LangChain and GraphChain. Nevertheless, this agentic environment increases the probability of the occurrence of multimodal prompt injection (PI) attacks, in which concealed or malicious instructions carried in text, pictures, metadata, or agent-to-agent messages may spread throughout the graph and lead to unintended behavior, a breach of policy, or corruption of state. In order to mitigate these risks, this paper suggests a Cross-Agent Multimodal Provenanc- Aware Defense Framework whereby all the prompts, either user-generated or produced by upstream agents, are sanitized and all the outputs generated by an LLM are verified independently before being sent to downstream nodes. This framework contains a Text sanitizer agent, visual sanitizer agent, and output validator agent all coordinated by a provenance ledger, which keeps metadata of modality, source, and trust level throughout the entire agent network. This architecture makes sure that agent-to-agent communication abides by clear trust frames such such that injected instructions are not propagated down LangChain or GraphChain-style-workflows. The experimental assessments show that multimodal injection detection accuracy is significantly enhanced, and the cross-agent trust leakage is minimized, as well as, agentic execution pathways become stable. The framework, which expands the concept of provenance tracking and validation to the multi-agent orchestration, enhances the establishment of secure, understandable and reliable agentic AI systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.