Papers
Topics
Authors
Recent
2000 character limit reached

Task-oriented Learnable Diffusion Timesteps for Universal Few-shot Learning of Dense Tasks (2512.23210v1)

Published 29 Dec 2025 in cs.CV

Abstract: Denoising diffusion probabilistic models have brought tremendous advances in generative tasks, achieving state-of-the-art performance thus far. Current diffusion model-based applications exploit the power of learned visual representations from multistep forward-backward Markovian processes for single-task prediction tasks by attaching a task-specific decoder. However, the heuristic selection of diffusion timestep features still heavily relies on empirical intuition, often leading to sub-optimal performance biased towards certain tasks. To alleviate this constraint, we investigate the significance of versatile diffusion timestep features by adaptively selecting timesteps best suited for the few-shot dense prediction task, evaluated on an arbitrary unseen task. To this end, we propose two modules: Task-aware Timestep Selection (TTS) to select ideal diffusion timesteps based on timestep-wise losses and similarity scores, and Timestep Feature Consolidation (TFC) to consolidate the selected timestep features to improve the dense predictive performance in a few-shot setting. Accompanied by our parameter-efficient fine-tuning adapter, our framework effectively achieves superiority in dense prediction performance given only a few support queries. We empirically validate our learnable timestep consolidation method on the large-scale challenging Taskonomy dataset for dense prediction, particularly for practical universal and few-shot learning scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.