APO: Alpha-Divergence Preference Optimization (2512.22953v1)
Abstract: Two divergence regimes dominate modern alignment practice. Supervised fine-tuning and many distillation-style objectives implicitly minimize the forward KL divergence KL(q || pi_theta), yielding stable mode-covering updates but often under-exploiting high-reward modes. In contrast, PPO-style online reinforcement learning from human feedback behaves closer to reverse KL divergence KL(pi_theta || q), enabling mode-seeking improvements but risking mode collapse. Recent anchored methods, such as ADPO, show that performing the projection in anchored coordinates can substantially improve stability, yet they typically commit to a single divergence. We introduce Alpha-Divergence Preference Optimization (APO), an anchored framework that uses Csiszar alpha-divergence to continuously interpolate between forward and reverse KL behavior within the same anchored geometry. We derive unified gradient dynamics parameterized by alpha, analyze gradient variance properties, and propose a practical reward-and-confidence-guarded alpha schedule that transitions from coverage to exploitation only when the policy is both improving and confidently calibrated. Experiments on Qwen3-1.7B with math-level3 demonstrate that APO achieves competitive performance with GRPO and GSPO baselines while maintaining training stability.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.