Papers
Topics
Authors
Recent
2000 character limit reached

Random matrix prediction of average entanglement entropy in non-Abelian symmetry sectors (2512.22942v1)

Published 28 Dec 2025 in quant-ph, cond-mat.stat-mech, and math-ph

Abstract: We study the average bipartite entanglement entropy of Haar-random pure states in quantum many-body systems with global $\mathrm{SU}(2)$ symmetry, constrained to fixed total spin $J$ and magnetization $J_z = 0$. Focusing on spin-$\tfrac12$ lattices and subsystem fractions $f < \frac{1}{2}$, we derive a asymptotic expression for the average entanglement entropy up to constant order in the system volume $V$. In addition to the expected leading volume law term, we prove the existence of a $\frac{1}{2}\log V$ finite-size correction resulting from the scaling of the Clebsch-Gordon coefficients and compute explicitly the $O(1)$ contribution reflecting angular-momentum coupling within magnetization blocks. Our analysis uses features of random matrix ensembles and provides a fully analytical treatment for arbitrary spin densities, thereby extending Page type results to non-Abelian sectors and clarifying how $\mathrm{SU}(2)$ symmetry shapes average entanglement.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.