Papers
Topics
Authors
Recent
2000 character limit reached

Neighbor-Aware Token Reduction via Hilbert Curve for Vision Transformers (2512.22760v1)

Published 28 Dec 2025 in cs.CV

Abstract: Vision Transformers (ViTs) have achieved remarkable success in visual recognition tasks, but redundant token representations limit their computational efficiency. Existing token merging and pruning strategies often overlook spatial continuity and neighbor relationships, resulting in the loss of local context. This paper proposes novel neighbor-aware token reduction methods based on Hilbert curve reordering, which explicitly preserves the neighbor structure in a 2D space using 1D sequential representations. Our method introduces two key strategies: Neighbor-Aware Pruning (NAP) for selective token retention and Merging by Adjacent Token similarity (MAT) for local token aggregation. Experiments demonstrate that our approach achieves state-of-the-art accuracy-efficiency trade-offs compared to existing methods. This work highlights the importance of spatial continuity and neighbor structure, offering new insights for the architectural optimization of ViTs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.