Papers
Topics
Authors
Recent
2000 character limit reached

Identifying social bots via heterogeneous motifs based on Naïve Bayes model (2512.22759v1)

Published 28 Dec 2025 in cs.CR

Abstract: Identifying social bots has become a critical challenge due to their significant influence on social media ecosystems. Despite advancements in detection methods, most topology-based approaches insufficiently account for the heterogeneity of neighborhood preferences and lack a systematic theoretical foundation, relying instead on intuition and experience. Here, we propose a theoretical framework for detecting social bots utilizing heterogeneous motifs based on the Naïve Bayes model. Specifically, we refine homogeneous motifs into heterogeneous ones by incorporating node-label information, effectively capturing the heterogeneity of neighborhood preferences. Additionally, we systematically evaluate the contribution of different node pairs within heterogeneous motifs to the likelihood of a node being identified as a social bot. Furthermore, we mathematically quantify the maximum capability of each heterogeneous motif, enabling the estimation of its potential benefits. Comprehensive evaluations on four large, publicly available benchmarks confirm that our method surpasses state-of-the-art techniques, achieving superior performance across five evaluation metrics. Moreover, our results reveal that selecting motifs with the highest capability achieves detection performance comparable to using all heterogeneous motifs. Overall, our framework offers an effective and theoretically grounded solution for social bot detection, significantly enhancing cybersecurity measures in social networks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.