Papers
Topics
Authors
Recent
2000 character limit reached

On the Role of Discreteness in Diffusion LLMs (2512.22630v1)

Published 27 Dec 2025 in cs.CL

Abstract: Diffusion models offer appealing properties for language generation, such as parallel decoding and iterative refinement, but the discrete and highly structured nature of text challenges the direct application of diffusion principles. In this paper, we revisit diffusion language modeling from the view of diffusion process and language modeling, and outline five properties that separate diffusion mechanics from language-specific requirements. We first categorize existing approaches into continuous diffusion in embedding space and discrete diffusion over tokens. We then show that each satisfies only part of the five essential properties and therefore reflects a structural trade-off. Through analyses of recent large diffusion LLMs, we identify two central issues: (i) uniform corruption does not respect how information is distributed across positions, and (ii) token-wise marginal training cannot capture multi-token dependencies during parallel decoding. These observations motivate diffusion processes that align more closely with the structure of text, and encourage future work toward more coherent diffusion LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.