Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Pedagogical Oversight: A Multi-Agent Adversarial Framework for Reliable AI Tutoring (2512.22496v1)

Published 27 Dec 2025 in cs.MA and cs.AI

Abstract: LLMs are increasingly deployed as automated tutors to address educator shortages; however, they often fail at pedagogical reasoning, frequently validating incorrect student solutions (sycophancy) or providing overly direct answers that hinder learning. We introduce Hierarchical Pedagogical Oversight (HPO), a framework that adapts structured adversarial synthesis to educational assessment. Unlike cooperative multi-agent systems that often drift toward superficial consensus, HPO enforces a dialectical separation of concerns: specialist agents first distill dialogue context, which then grounds a moderated, five-act debate between opposing pedagogical critics. We evaluate this framework on the MRBench dataset of 1,214 middle-school mathematics dialogues. Our 8B-parameter model achieves a Macro F1 of 0.845, outperforming GPT-4o (0.812) by 3.3% while using 20 times fewer parameters. These results establish adversarial reasoning as a critical mechanism for deploying reliable, low-compute pedagogical oversight in resource-constrained environments.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube