Papers
Topics
Authors
Recent
2000 character limit reached

Collaborative Optimization of Multiclass Imbalanced Learning: Density-Aware and Region-Guided Boosting (2512.22478v1)

Published 27 Dec 2025 in cs.LG

Abstract: Numerous studies attempt to mitigate classification bias caused by class imbalance. However, existing studies have yet to explore the collaborative optimization of imbalanced learning and model training. This constraint hinders further performance improvements. To bridge this gap, this study proposes a collaborative optimization Boosting model of multiclass imbalanced learning. This model is simple but effective by integrating the density factor and the confidence factor, this study designs a noise-resistant weight update mechanism and a dynamic sampling strategy. Rather than functioning as independent components, these modules are tightly integrated to orchestrate weight updates, sample region partitioning, and region-guided sampling. Thus, this study achieves the collaborative optimization of imbalanced learning and model training. Extensive experiments on 20 public imbalanced datasets demonstrate that the proposed model significantly outperforms eight state-of-the-art baselines. The code for the proposed model is available at: https://github.com/ChuantaoLi/DARG.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.