Context-Aware Intelligent Chatbot Framework Leveraging Mobile Sensing (2512.22032v1)
Abstract: With the rapid advancement of LLMs, intelligent conversational assistants have demonstrated remarkable capabilities across various domains. However, they still mainly rely on explicit textual input and do not know the real world behaviors of users. This paper proposes a context-sensitive conversational assistant framework grounded in mobile sensing data. By collecting user behavior and environmental data through smartphones, we abstract these signals into 16 contextual scenarios and translate them into natural language prompts, thus improving the model's understanding of the user's state. We design a structured prompting system to guide the LLM in generating a more personalized and contextually relevant dialogue. This approach integrates mobile sensing with LLMs, demonstrating the potential of passive behavioral data in intelligent conversation and offering a viable path toward digital health and personalized interaction.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.